JULY 7-8, 2016 | SEOUL, SOUTH KOREA

Primary Component Carrier Assignment in LTE-A

Husnu S. Narman

Mohammed Atiquzzaman

School of Computer Science

University of Oklahoma, USA.

atiq@ou.edu

http://www.cs.ou.edu/~atiq

July QSHINE 2016

Outlines

- Introduction
- Primary Component Carrier Assignment
- Analysis
- Results
- Conclusion

Communication Speed Over Generation

LTE and LTE-A

OFDMA (D \downarrow), SC-FDMA (U \uparrow)

LTE LTE-A

300Mbps (D \downarrow) - 75Mbps (U \uparrow) 3Gbps (D \downarrow) - 1.5Gbps (U \uparrow)

13Mbps (D \downarrow) crowded area

OFDMA, 6, RN, MIMO

Technology

Theoretical Throughput

Experienced Throughput

Carrier Aggregation (CA)

Up to 5 Carrier Components (CC) for downlink and uplink

Objective

Analyzing the impact of packet drops and delay experienced by users during the primary component carrier assignment operations.

Component Carrier Assignment

- Case 1: PCC needs to be updated, therefore all SCCs need to be updated.
- Case 2: All SCCs need to be updated but PCC does not need to be updated.
- Case 3: Some SCCs need to be updated but PCC does not need to be updated.

PCC and SCCs

Can performance of reassignment of primary component carrier be improved if one of SCCs is used as PCC?

Mohammed Atiquzzaman

so the others CCs.

Mohammed Atiquzzaman

Queuing Analysis

Disjoint Buffer System

Simulation parameters

Scenario [21]	b
Number of eNB	1
Used Bands	800MHz, 1.8GHz, 2.6GHz
Number of CCs in Each Band	4
Total Number of CCs	12
Queue Length of Each Queue	50 packets
Bandwidth of CCs	10MHz
Modulations	BPSK, QPSK, 16QAM, and 64QAM
CQI	3, 5, 7, and 11
Transmission Time Interval	10ms (10ms is average, it can be more or less)
Time for CCA	20ms (at most 20ms)
CQI Threshold	The highest possible
Simulation Model	Finite buffer [22]

- LTE (1 CC), LTE-A (4 CCs)
- 1/2 of users are LTE-A.
- Users are freely move around of eNB
- Min-delay packet scheduling is used.

Results

- Discrete event simulation for downlink process with carrier assignment methods.
 - 4 CCs assignment to LTE-A type users and 1 CC assignment to LTE type users
- We compare four methods by considering with/out PCC granting
 - RA (Random)
 - LL (Least Loaded) according to user loads on carriers
 - CQ (Channel Quality) according to channel quality
 - LR (Least Load and Rate) user loads and channel quality for rate function

Delay: With/out PCC Granting

Objective

Observing effects of number of users on delay.

13

Throughput: With/out PCC Granting

Objective

Observing effects of number of users on throughput.

LL = Least Load Slightly higher throughput with LR=Least Load Rate PCC granting. RA = RandomCQ= Channel Quality CQLL**□ □** *LR* G → RA Without PCC Granted With PCC Granted CQ is the 1.0 F 1.0_F worst in 0.90.9with/out PCC 0.8 0.8 Throughput Ratio granting. 0.7 0.60.6 0.5 0.50.40.3 0.30.2 0.2^{L}_{0} 20 40 60 80 100 20 40 60 80 100 (a) (b)

Conclusion

Thank You

http://www.cs.ou.edu/~atiq

atiq@ou.edu